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Mixed quantum-classical atomistic simulations have been carried out to investigate the mechanistic details of
excited state intramolecular electron transfer in a betaine-30 molecule in acetonitrile. The key electronic
degrees of freedom of the solute molecule are treated quantum mechanically using the semiempirical Pariser-
Parr-Pople Hamiltonian, including the solvent influence on electronic structure. The intramolecular vibrational
modes are also treated explicitly at a quantum level, with the remaining elements treated classically using
empirical potentials. The electron-transfer rate, corresponding to S1 f S0 relaxation, is evaluated via time-
dependent perturbation theory with the explicit inclusion of the dynamics of solvation and intramolecular
conformation. The calculations reveal that, while solvation dynamics is critical to the rate, the intramolecular
torsional dynamics also plays an important role. The importance of the use of multiple high-frequency quantum
modes is also discussed.

I. Introduction

Since electron transfer (ET) processes are ubiquitous in a large
variety of chemical and biological reactions, many recent
theoretical and experimental studies have been devoted to
understanding the details and mechanisms of ultrafast ET
reactions.1 In particular, intramolecular ET has been a primary
focus in recent research because the contributions of diffusional
encounter can be avoided, and the process can be photoinitiated.
For such an ultrafast ET reaction, nonequilibrium solvation
effects and the details of the accessible intramolecular vibrational
energy levels have been inferred to play a crucial role. To
incorporate these nonequilibrium effects on the ET rate, Sumi
and Marcus described the dynamics with a formulation including
a low-frequency classical vibrational degree of freedom in
addition to a diffusional evolution of a classical solvation
coordinate.2 Jortner and Bixon pointed out that for electronic
excited state ET, the potential impact of high-frequency
vibrational modes was to introduce a manifold of vibrationally
hot ground-state levels as potential ET product vibronic
surfaces.3 The treatment of both a diffusive solvent coordinate
and a quantized intramolecular vibrational mode was incorpo-
rated into an accessible low-dimensional hybrid model by
Barbara and co-workers4 to account for their experimental results
for intramolecular ET of a solvated betaine-30 dye molecule.

The structure of a betaine molecule (a substituted pyridinium
N-phenolate) is shown in Figure 1, where for betaine-30, the
pendant R groups are phenyl rings.

The betaine-30 dye molecule is one of the most sensitive
solvatochromic probes and has been exploited as the basis for
theET solvent polarity scale of more than 300 solvents.5 Since
the ET reaction can be controlled by solvation dynamics or
vibrational Franck-Condon factors, or both, depending on the
time scale for solvation dynamics, betaine-30 has been a target
molecule to explore the kinetics of ET in a relatively compre-
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Figure 1. Molecular structure of a betaine dye. For betaine-30, the
pendant group R) C6H5 and for the simplest betaine, R) H.
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hensive series of experiments.4,6-13 In addition, the most recent
experiments on this system13 have been interpreted as also
reflecting intramolecular torsional dynamics, which was sug-
gested as an important degree of freedom by earlier simulations
from our lab.14,15

The hybrid model mentioned above generally successfully
reproduced temperature and solvent dependences of experimen-
tal data, with a model consisting only of a classical diffusive
solvent mode, with a single low-frequency and single high-
frequency solute vibrational mode. However, it is of consider-
able interest to see to what extent such a model with a small
number of empirically derived parameters accurately captures
the high dimensional molecular system. Further, it has been
suggested that the use of more realistic multiple time scale
responses, including the fastest inertial time scale, is important
for the proper description of the true ET dynamics.16-18 Inertial
solvent relaxation processes occur on the tens to hundreds of
femtoseconds time scale, and slower diffusional solvent motions
occur on the picosecond time scale.19 Since the inertial solvent
relaxation can account for a large fraction of the electronic
energy gap dynamics, the relative importance of the two regimes
will depend on the accessible final vibronic states of the reactant.
Hence, there still exist important unclarified issues that could
be answered from a detailed description of the experimentally
studied system.

In earlier work from this lab,14,15 practical mixed quantum-
classical simulation methods for such large molecular systems
were presented which treated most of the molecular elements
in microscopic detail. The important quantum mechanical
degrees of freedom, including electronic state, were treated
explicitly, with a surface-hopping algorithm for nonadiabatic
electronic transitions. These studies successfully reproduced a
number of properties, such as the absorption intensity, width,
and position of the S0 to S1 band. They also revealed interesting
elements, including the fact noted above, that the transition
energy is strongly coupled with the central dihedral ring angle
(θ in Figure 1), that angle having the gas-phase S1 excited-
state minimum (and the minimum energy gap) for perpendicular
rings. However, they were not able to evaluate a back ET S1 f
S0 rate, since that work used an unrealistic approximation for
the intramolecular vibrations that the internal normal modes have
not only the same frequencies in the ground and excited state,
but also that their minima were not displaced. This approxima-
tion restricts transitions between electronic states to vibrational
transitions involving single quanta. The very slow rate of
nonadiabatic transition inferred in the simulation is consistent
with the hybrid model result that a more highly vibrationally
excited ground state is the preferred product channel.

In the present paper, we address the roles of solvation
dynamics and intramolecular dynamics on the ET rate by
implementing a detailed molecular description of the solvated
excited state in a calculation carried out in the spirit of the hybrid
model. However, without the assumption about the character
of the vibrational modes involved or of the solvation dynamics,
this is done in terms of a Fermi golden rule rate expression in
which the effect of solvation dynamics appears parametrically
and the vibrational Franck-Condon contributions are calculated
explicitly, although approximately. To do this, we extend the
elements included in the previous mixed quantum classical
simulations to explicitly include the full set of vibronic channels
consistent with a detailed multidimensional displaced harmonic
oscillator model of the solute.20-22

The paper is organized as follows. We present the theoretical
and simulation methods implemented for this study in section

2. Section 3 reports and discusses the numerical results of the
simulations followed by some concluding remarks in section
4.

II. Methods

Since the electronic transition of the ground to the first excited
state of betaine-30 is the promotion of an electron fromπ orbital
to aπ* antibonding orbital, the accurate treatment of electrons
of the π subsystem is crucial to elucidate the intramolecular
transition. Unlike conventional molecular dynamics (MD)
simulations, therefore, we have to treat the key electronic
degrees of freedom ofπ subsystem quantum mechanically and
recalculate their wave functions at every MD time step. The
electronic structure is calculated by employing the semiempirical
Pariser-Parr-Pople (PPP) SCF method23-25 with single excita-
tion configuration interaction (CI). This method has proved quite
adequate in reproducing the electronic transition energies of
aromatic and conjugated systems.26-30 The remaining electrons
and nuclei are treated as effective classical nuclear cores. For
core-core interactions, we include nonbonded interactions to
correctly describe torsional motions by steric effects.26 The
excited-state energies are calculated from the diagonalization
of the CI matrix. The most time-consuming part in the present
simulations is the calculation of the excited-state forces, which
are performed by the matrix inversion of the coupled perturbed
Hartree-Fock equations.31 For complete details, the reader is
referred to earlier simulations.14,15

The CH3CN molecules are realized as a rigid three site model
with interaction sites at the atomic positions of the methyl
carbon, carbon, and nitrogen. We use the solvent representation
based on the OPLS force field32 instead of that derived from
ab initio calculations33 since the former potential parameters
are found to be superior in the ability to reproduce the observed
spectral shifts.12 One important difference between the two sets
of parameters is that the dipole moment in the OPLS parameters
is significantly smaller. The smaller dipole moment of solvent
stabilizes the ground-state less and the energy gap between the
ground and excited states becomes smaller.

A. Nonadiabatic Transition Rate. To calculate the nona-
diabatic transition rate, we make use of the Kubo-Toyozawa
approach34 treating intramolecular high-frequency vibrations
explicitly. In spirit of the Sumi-Marcus model,2 we assume
the transition rate can be taken as a function of solvation
progress that is time-dependent. The rate can be calculated by
averaging over many trajectories starting from different initial
conditions rather than by evaluating the required free energy
quantities.

In the lowest order of perturbation theory, the transition rate
between two adiabatic statesI andJ is given by35

where ∆ and VIJ are the diagonal and off-diagonal coupling
terms, respectively. The energy gap is defined as∆EIJ ≡ EJ -
EI determined from the diagonalization of the CI matrix and
exp+ denotes a positive time-ordered exponential operator. If
we assume that the ground and excited states can be described
by two identical mutually displaced multidimensional harmonic

kJfI ) 1

p2∫dτ exp{ i
p

∆EIJτ} ×

〈VIJ(τ) exp+{- i
p
∫dτ′∆(τ′)}VJI(0)〉 (1)
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surfaces, the diagonal coupling term is

whereδR is the displacement of the equilibrium coordinate,ωR
is the frequency, andQR is the mass-weighted coordinate forR
normal mode. In earlier studies,21,22the effects of the frequency
shifts and Duschinsky rotations were not strong in the vibronic
spectra of the simplest betaine pyridinium-N-phenoxide (R)
H in Figure 1). The effects were also found to be small in the
ET reaction between the tryptophan cation radical and tyrosine.36

Therefore, we assume that the effects can be neglected in
betaine-30, as well.

The adiabatic states depend parametrically on the nuclear
coordinates and the off-diagonal coupling term is given by

whereΨI is theIth CI wave function andPR is the corresponding
momentum for R mode. Following the Kubo-Toyozawa
approach,34 we ignore the second term and assumeSR ≡
〈ΨI|PR|ΨJ〉 to be independent of the nuclear coordinates. Then,
the transition rate can be obtained as

with uR ) âpωR/2. Note it is only the last term that allows the
normal mode with zero displacement to contribute to the rate.
The time-dependent ratekJfI(t) is evaluated by taking an
equilibrium average over initial vibrational states under the
assumption that the vibrational relaxation is very fast. This
assumption is in a similar spirit to that of the hybrid model.4

Since we neglect the frequency shifts and Duschinsky
rotations, the values ofωR can be obtained from the ground
state. The geometry optimization and normal-mode analysis of
the ground state for betaine-30 are performed with AM1
semiempirical Hamiltonian in the Gaussian 98 program.37 To
obtain the values of the displacementδR, the normal-mode
analysis of the excited state should be performed but the number
of atoms in betaine-30 makes the analysis intractable at a reliable
level of the electronic Hamiltonian. Instead, we employ an
approximate projection method. The normal coordinates of the
ground state of betaine-30 are projected onto those of the
simplest betaine obtained in previous works.21,22 We make the
reasonable assumption that the geometric structures and torsional
degree of freedom of the central framework in the two betaines
are similar to each other. The pendant rings in betaine-30 are
not coplanar with this framework.14,15 This assumption is also
consistent with the fact that the effects of the frequency shifts
and mode mixing are weak for the simplest betaine.21,22To find
the most similar mode between the normal coordinates of
betaine-30 and those of the simplest betaine, we calculate their
inner products; the displacementδR of R mode of betaine-30 is

taken as that of the simplest betaine that gives the maximum
value of the inner product. If the maximum value of the inner
products is smaller than a preselected value, we setδR ) 0
assuming that no similar mode exists in the simplest betaine.
(Betaine-30 has a large number of additional modes.) After
calculating the intramolecular vibrational reorganization energy
with the equation:

λB30
vib ) ΣR

1/2ωRδR
2, we find that 0.3 as a preselected value

produces a reasonable intramolecular vibrational reorganization
energy, 4538 cm-1.4,13 Table 1 shows the frequencies of the 38
modes of betaine-30 with nonzero displacement that are
determined by this process. For completeness, we note here that
the solvent reorganization energy was determined previously15

to be 3625 cm-1.
We have also considered an alternative model where hydrogen

atoms in the simplest betaine corresponding to the phenyl rings
in betaine-30 have masses of C6H5. In order words, the model
assumes that the betaine-30 has the same electronic structure
as the simplest betaine except heavy-mass hydrogen atoms. In
this case, projection is not required, and we can use the same
values ofδR as those in the simplest betaine, neglecting all other
modes in betaine-30. We find no significant differences between
results for electronic dynamics reported below that are deter-
mined for these two models, suggesting that the assumptions
inherent in the projection approach are not crucial. Therefore,
all the results below are calculated with the projection method.
It should be noted that these methods are used only to find the
values ofδR and all the time-dependent simulations are done
with the full betaine-30 molecule.

The energy gap∆E and the nonadiabatic coupling matrix
elementSR are time-dependent and should be recalculated at
every time step. We neglect nonadiabatic coupling due to solvent
motion, since it was found to be small in the previous
simulation.14,15 The value of SR can be obtained from a
calculation similar to that for the excited-state forces, but for
the off-diagonal quantity〈ΨI|∂/∂R|YJ〉. For the details and
definitions of the required terms, the reader is referred to eqs 4
and 7 in ref.14 We can make use of the linear transformation
coefficients{l} between the Cartesian and the normal mode
coordinates as

DenotingSJ(t) as a survival probability that the system is still
in the stateJ at t, the evolution equation

∆ ) ∑
R

ωR
2δRQR +

1

2
∑

R
ωR

2δR
2 (2)

VIJ ) ∑
R

〈ΨI|PR|ΨJ〉 PR +
1

2
〈ΨI|PR

2|ΨJ〉 (3)

kJfI(t) )
1

p2
∫dτ exp{ i

p
∆EIJ(t)τ} ×

exp{ 1

2p
∑

R
δR

2ωR[cothuR(cosωRτ - 1) - i sin ωRτ]} ×

{| 1

2p
∑

R
δRSR(t)ωR[cothuR(cosωRτ - 1) - i sin ωRτ]|2 +

1

2p
∑

R
SR

2(t)ωR[cothuR cosωRτ - i sin ωRτ]} (4)

TABLE 1: Sample Values of |〈Sr〉| in a Dimensionless Unita

|〈S〉| ω (cm-1) |〈S〉| ω (cm-1)

0.403 1750.0 0.167 552.2
0.284 700.6 0.153 793.4
0.201 843.4 0.142 118.4
0.197 1212.5 0.135 1155.0
0.187 987.0 0.131 1337.2
0.186 1536.7 0.131 1695.1
0.185 728.7 0.129 1044.5
0.179 1613.4 0.126 1757.2
0.179 638.4 0.124 345.8
0.173 1669.4 0.121 1285.3

a The values are obtained by averaging the results of all time steps
in 21 trajectories. The 20 largest values are listed.

〈ΨI| ∂

∂Qj

ΨJ|〉 ) ∑
i

(l-1)j
i〈ΨI| ∂

∂R
ΨJ〉 (5)

dSJ(t)

dt
) - kJfI(t)SJ(t) (6)
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can be integrated to obtainSJ(t). Because the rate is dependent
on the solvent coordinate that is time-dependent, the survival
probability need not be exponential, in general.34,35

B. Simulation Methods. After an initial equilibration of a
total of 1200 CH3CN solvent molecules at 298.15 K, maintain-
ing a solvent density of 0.78675 g/ cm3, the betaine-30 molecule,
in an equilibrium gas-phase structure, is inserted. Removing
overlapping solvent molecules with the dye molecule makes
the total number of solvent molecules 1172. The system is again
equilibrated with the ground-state potential. The Nose-Hoover
thermostat technique is used for equilibration.38

Initial ground state configurations to be photoexcited are
prepared by running further equilibration for at least 5 ps with
a time step of 2 fs to minimize correlations between trajectories.
The photoexcitation is simulated by placing the betaine-30
molecule in the first excited state instantaneously. The ground
state potential should then be replaced with that of the excited
state from this vertical excitation time step. We assume that
trajectories are adiabatic on the excited state and we do not
calculate the surface hopping probability, unlike earlier simula-
tions. The simulation of the excited state is basically the same
as that of the ground state except that the Nose-Hoover
technique is not used. To calculate the excited-state energies
and forces efficiently, we consider only 50 single excitation
configurations, which are chosen at every time step by selecting
the 50 lowest energy diagonal elements of the CI matrix. For
the transition to the first excited state, which is the only transition
considered in the simulation, it is verified that the ground state
absorption spectrum generated by these 50 configurations and
all possible configurations are numerically comparable.

The neighbor list technique and periodic boundary condition
are used and all the interactions are truncated with a smooth
cutoff of half the box length. The equations of motion are
integrated using the velocity Verlet algorithm with a time step
of 2 fs. We use constraint dynamics such as RATTLE and
SHAKE to keep the rigidity of the acetonitrile and the betaine-
30 molecules.39 The CH3CN solvent molecules are realized as
a rigid three site model. For betaine-30 molecule, we allow the
six ring rotations and the single stretching motion of the central
N-C bond, fixing all other degrees of freedom.

In the present work, we explicitly include the solute central
N-C bond stretching motion, in addition to the ring torsional
motions since the electronic distribution is expected to be
coupled to this stretching motion. Electronic coupling across
this bond connects the two charge centers in Figure 1. Hence,
by including this motion explicitly, we allow the electronic
distribution to be fully coupled to this degree of freedom.
Nevertheless, there is a compromise here that needs to be noted.
When treating the vibronic levels via normal modes in the rate
expression, the contribution of this relatively low-frequency local
motion to the energy gap is, in effect, included twice. As the
number of normal modes active in the process will be seen to
be rather large, we have accepted this inconsistency.

III. Results

To understand the details of the relaxation processes after
photoexcitation, we plot the energy gap relaxation between the
ground and the first excited states and central ring angle as a
function of time in Figure 2. To minimize statistical noise, we
have averaged 37 independent trajectories. First, we can observe
the properties of the ground-state equilibrium from the data at
t ) 0. The averaged energy gap in the ground state is found to
be 2.01 eV or 16200 cm-1. This is a slightly smaller value than
17600 cm-1 in earlier simulations but very close to the

experimental value of 16300 cm-1.40 This implies that the
ground-state properties can be somewhat better described with
the present set of parameters. The equilibrium central ring angle
in the ground state is about 56°, which is a comparable value
to the experimental value of 65° 41 or to other semiempirical
calculation results of 48° 12 or 60°.42

The photoexcitation involves the promotion of an electron
from a π to a π* orbital, resulting in an equilibrium central
ring angle in the excited state of 90°, where the steric effects
are also minimized. The most significant geometric change of
betaine-30 due to the excitation should be that of the central
ring angleθ, which can characterize the solute reorganization.
The expected strong correlation between energy gap andθ is
clearly seen in Figure 2, for times longer than 1 ps.

The dependences of the rate on the energy gap and the central
ring angle are plotted in Figure 3. We average the accumulated
results from all instantaneous∆E andθ in 37 trajectories. One
can notice the relatively larger statistical noise at small∆E,
since the energy gap is much less frequently small. The figure
shows similar strong dependences of the rate on both∆E and
θ since they are correlated. The maximum rate in fact occurs at
a relatively large energy gap, not at the smallest gap, mirroring
the Franck-Condon density of vibronic states at that gap.22

Similarly, the maximum rate occurs at aroundθ ) 80° not at
90°. The fully twisted conformation is not an important one for
the ET dynamics.

In Figure 2a, the energy gap is seen to drop rapidly over the
first 0.2 ps of trajectories. This rapid drop of about 0.7 eV is
dominated by the inertial motion of the solvent molecules subject
to the different forces present on two electronic surfaces. Then,
the energy gap reduces more slowly until about 5 ps. After 5
ps, no significant decrease of the energy gap is found. These
different regimes can be also seen in the time dependence curve
of central ring angle. The first one is the fast relaxation over
the first 1 ps of trajectories followed by a slower relaxation
phase until about 5 ps. And then the angle seems to diffuse

Figure 2. Time evolutions of (a) energy gap, (b) central ring angle,
and (c) survival probability. The curve of survival probability is plotted
on a semilog scale and the line of least-squares fit to the data fort >
2 ps is indicated.
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around 75°, which can be understood by the fact that the
potential surface regarding the rotation is relatively flat for large
angle.43

Examining the two curves in parts a and b of Figure 2, we
can characterize at least four relaxation time scales. The first
one corresponds to the inertial solvent reorganization time scale
for 0-0.2 ps. The second relaxation on the time scale of 0.21
ps is caused by the diffusive solvent reorganization. Then, the
relaxation for 1-5 ps can be attributed to the solute reorganiza-
tion represented by the change of the central ring angle. After
5 ps, both the solvent and the solute seem to be completely
relaxed.

In Figure 2c, we plot the calculated survival probability as a
function of time. The smooth curve obtained by averaging 37
trajectories shows that the relaxation rate is nearly constant after
around 2 ps. The back transfer ratekET evaluated by a linear fit
to the data fort > 2 ps is 0.23 ps-1 and the corresponding
lifetime τET is 4.35 ps. This value is much larger than 0.03 ps-1

of earlier simulations.14 Since the major difference between the
present and the earlier results is the improved inclusion of high-
frequency internal molecular modes, this result numerically
proves that the high-frequency vibronic channels play an
important role in the ET reaction. However, the evaluated rate
is smaller than the experimental results of 0.8313 and 2 ps-1.4

Considering the character of the present model, particularly the
approximate electronic structure for the excited state, we
consider the agreement with experiment to be quite good, and
sufficient to justify further analysis of the underlying compo-
nents of the rate process.

Since the nonadiabatic coupling from each normal mode
contributes to the ET reaction in a collective fashion, including
potential cancellation in their sum, it is not straightforward to
single out the magnitude of the contribution of each mode.
Nevertheless, the value of|〈SR〉| may be used as a measure of
the magnitude of the contribution, as seen in eq 4. The
instantaneous values of|〈SR〉| in a representative set of 21
trajectories are averaged for eachR mode and the 20 largest
values are reported in Table 2. The largest contribution comes
from the mode withω ) 1750.0 cm-1, which is very similar to
the value (νqm ) 1554 cm-1) of the single quantum mode used
in earlier work.4 However, Table 2 demonstrates clearly that it
is not the single dominant contribution, and determination of
the majority of the coupling requires a few dozen normal modes.

The rate obtained with only the three most important modes
yields a rate only about 5% of the total, while using the largest
six yields only 10%. This reinforces the importance of the use
of multiple quantum modes rather than a single mode, in a
realistic description.

To further analyze the observed multiple time scale relax-
ations, we carry out simulations for the cases that solute or
solvent molecules are completely frozen. In Figure 4, the time
profiles of energy gap, central ring angle, and survival prob-
ability are plotted for the frozen solute and solvent cases. We
have averaged 20 trajectories for the frozen solute case, while
only four trajectories are sufficient to see the impact for the
frozen solvent case. In the frozen solute case, the initial rapid
energy gap relaxation is nearly the same as in the normal case
for the first relaxation period of 0-0.2 ps. The second relaxation
regime of the diffusive solvent reorganization for 0.2-1 ps is
observed but the solute reorganization regime disappears. Thus,
the figure shows the dominance of the inertial solvent reorga-

Figure 3. Averaged electron-transfer rate as a function of the energy
gap (upper) and the central ring angle (lower).

TABLE 2: Normal Mode Frequencies (cm-1) and
Displacements in the Ground State of Betaine-30a with
Nonzero Displacement

mode ω δ ω ω δ mode ω δ

1 114.1 0.53 16 752.0-0.41 31 1750.0 0.06
2 118.4 -5.96 17 793.4 -0.04 32 1757.2 0.06
3 125.3 0.20 18 901.2 0.41 33 1758.4 0.08
4 190.4 0.22 19 938.1 0.06 34 1763.3-1.04
5 292.6 0.38 20 941.9 0.20 35 1779.5 0.02
6 320.8 -0.78 21 947.8 0.41 36 1807.6 0.02
7 433.5 -0.78 22 961.8 0.06 37 2007.6 0.31
8 445.3 0.22 23 963.3 0.03 38 3186.2 0.05
9 464.7 -0.57 24 971.4 0.20 . .

10 552.2 0.03 25 1377.1-0.16 . .
11 578.8 -0.57 26 1379.8 -0.62 . .
12 616.5 0.03 27 1570.0-0.32 . .
13 638.4 0.20 28 1593.1 0.30 . .
14 678.0 0.07 29 1695.1 0.02 . .
15 723.3 0.41 30 1726.0-0.41 . .

a AM1 Hamiltonian is used to perform a geometry optimization for
the ground state.

Figure 4. Time evolutions of (a) energy gap, (b) central ring angle,
and (c) survival probability when the solute (solid line) or the solvent
(dashed line) is frozen. The curve of survival probability is plotted on
a semilog scale.
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nization in the first period and the existence of the slower solvent
reorganization period after that. In the frozen solvent case, no
meaningful changes both for energy gap and central ring angle
are observed since the frozen solvent environment prevents the
solute reorganization too. The evaluated rates are far slower,
0.049 ps-1 and 1.0× 10-4 ps-1 for the frozen solute and solvent
cases, respectively. For the completely frozen solvent, a vastly
slower rate is seen.

To check the ET rate dependence on the solvent relaxation
rate, we have also considered a change in the masses of the
solvent molecules. To mimic solvents which have slower and
faster relaxation rates, we multiply all masses of the solvent
atoms by 10 and by 0.1, respectively. We have averaged four
trajectories for both cases. By the comparison with the relaxation
curves in Figure 5, one can notice that the ring angle relaxation
time is strongly affected by the solvent relaxation time. While,
in the fast solvent case, the solute is fully relaxed on the order
of 1 ps that is similar to the solvent relaxation time, the solute
reorganization is very slow in the slow solvent case. As a result,
the faster solvent gives the larger rate as noted earlier.4 The
evaluated rates for the faster and the slower solvents are 0.34
and 0.087 ps-1, respectively.

IV. Conclusions

We have performed mixed quantum classical atomistic
simulations of the intramolecular electron transfer reaction of
betaine-30 in acetonitrile at room temperature. Theπ electronic
degrees of freedom of the betaine-30 are treated quantum
mechanically with the semiempirical PPP electronic structure
method. The excited state dynamics is efficiently investigated
with the single excitation configuration interaction method. The
back electron transfer rate is evaluated by the time-dependent
perturbation theory. The high-frequency internal vibrational
modes are explicitly treated by assuming that the ground and
excited states can be described by two identical mutually

displaced multidimensional harmonic surfaces. The values of
frequencies are obtained from the analysis of the ground state
for betaine-30 and the values of displacements are obtained by
using a projection method onto the modes of the simplest
betaine. The evaluated back transfer ratekET is 0.23 ps-1. This
value is much larger than that in earlier simulations from our
lab and comparable to the experimental results, with inclusion
of a large number of the high-frequency vibronic channels.

The atomistic simulation results give a clear demonstration
that multiple time scale relaxations are important to describe
the election transfer dynamics correctly.16-18 The fastest inertial
time scale dominates the large initial subpicosecond relaxation.
It is followed by the diffusive solvent relaxations on the
picosecond time scale and then by a slow torsional angle
relaxation of betaine-30. These multiple time scales are each
indispensable for the proper description of the energy gap
dynamics. We also find that the relaxation time scale of the
torsional angle is strongly dependent on the mobility of the
solvent molecules. Another important point of the present
simulation results is that a relatively large number of high-
frequency quantum modes participate in the electron transfer
dynamics. While the hybrid model with a single quantum mode4

captures correctly the idea that both the low and high frequency
modes are important, multiple quantum modes are necessary
to faithfully describe the electron transfer dynamics of the high
dimensional molecular system. Further, the fact that solvation
dynamics is found to be required to obtain a rate comparable
to experiment suggests that even in solvents with relatively slow
average relaxation times, observed ET rates likely reflect a
significant component of ultrafast solvation dynamics.16-18

Thus, the present simulation results provide considerable new
insight into the ultrafast intramolecular electron transfer reaction.
By successfully capturing the effects of high-frequency and low-
frequency quantum vibrational modes and contributions by
solvation, the detailed molecular level results can be useful for
the interpretation of experimental observations. The methods
employed in this work to describe a delocalized electronic
system should also be applicable to other interesting systems,
including conductive polymers.44
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